






A. Approximation Techniques for Computing Mairiz  Erponcniinl

In our derivation we make usc of the following properties of matrix e.xl,onc]liial. l’hc  power series definition of
exponential of a matrix, say 0, is given by

ee=]+d+-~102+~i~3+~ie4  .}, . . (3.1)

from which it follows that if O = V~V-  1, i.e., if O is a similarity transforlllatioli  of q+, tlicn

e“ :  Ve@V-l (3.2)

Now,  considcr  a splittingof O as 0=01 +-02. If 01 and 02 corn~lmte  the]l

~@At . ~tl, Atet?. At.

If fll and 02 do not  cornrnute  then first- and seccmd-order apprCIXjIIIILtjOIIS  of c ‘A * arc given by [6]

and
e8At ~_ e+@2Atc@3Ate+OSAt + 0((At)3) (3.4)

]n the following, we concentrate on the second-order temporal ap})roxirnatiorl  givcrl  lJY (3.4). ~Ijgher-order wvoxjnla-

tions will be discussed in $V.C. Note that, the approxi]llation  in (3.4) is not unique. ln SVI. C, a different second-order
approximation with a greater efficiency  for parallel co~n;jutatio~l is discussed. It should be also mentioned that there
arc other methods for approximaticm  of matrix exporlcmtial. } or cxan]plcj  tllcrc  is a class of Padc  approximation
techniques, with various degree of accuracy, for computing matrix exponential. Ilowevcr, these  I’ade approxirnations
either result in explicit rncthods  with conditional stability or ill i~nplicit nletllocls with unconditional stability but
demanding large linear system solution.

B. Temporal and Spatial I)iscretizaiions

From (3.4) a second-order temporal approximation of (2.17) is obtained as

~~or spatial discretization of (3.5), let us superimpose a unifornl  grid with  AZ ‘ AY = ~j i on  ~hc  spatial  domain  ~.

Again, wc first consider a second-order accurate spatial discrctization  (higher  order discretizations  will be discussed irl
$V.B). With this grid size, Q(”’)  and F(n’) are 3A’2 vectors and c k a Clhgollal IImtrix given by c = IJjag{cij}&@’2xN’.

Also,

(m)wherein, for exam~~le, qij represents the apprc)ximate  solution  for point (iA x, jAy) at the mth time step and cij
denotes the velocity at the same point. ‘JJhe above rcprescntat  ion iruplics a~l ordering of the vectors elements first
in the direction of z (i) and then in the direction of v (~). With this ordcrillg  and using a second-order centered
finite-difference approximation, the operators 6X and Jy arc given by

6X = ~~-x~  and 6y = ~~T1’;7J’t (3.6)

wherein t indicates the transpose,

3 = Diag{S,  S, . . . . S} ERN’XN’ with S =. ‘lkidiag[l,  O, - I] C!J?NXN, (3.7)
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and P.c?RN2XN2 is a permutation matrix that arises ill 21) discr(te  Fourier transform. Spcciflcally, if the two vectors
V and WE32N’ are defined as V = Col{Vij} and W : Col{Wij})  for i a]ld j = 1 to N, then V = PW implies that
~j == Wji. AIso, P-1 = Pt since 1’ is a Pcmnutation  II[atrix and hence ortho~~o~ial. ‘1’lle matrices #~ZAt  and B~YAt
in (3.5) can be written as

“ ’ ( )

o CT o
#_rAt =: & ~ O 0 a]ld l~~YAt := 2CX

o 0 0

where a == 7A*;. nom the property of matrix P it follows that

where c’ is obtained from c through

let us dcfi~[e a permutation matrix
}J~VAt can Ilow bc written as

where

h’]

o 0  C21’3P’
0 0 0 (3.8)

1’31” 0 0

Our subsequent derivation can bc further simplified tly noting that the matrix lI;2 can bc reduced to a form similar
to I;]. ‘1’o this crld, consider a permutation matrix ~3zz.c!R3N’x3N’  givcll by

( )

100.
P~2 = 0 0 1

0 1 0

It can be then shown that
T221’:2F;2 = I1;

where

E; =

I)cfininfg  another permutation matrix liZ given by

o C’z’ o
SOo
0 0 0

[0 P 0]

it then follows from (3.9) and (3.11) that

#ivAt ~ ~ 2ol~2E;7;~  ~ ~2c2cIJ:;jJ~

I[;quation  (3.5) carl J]OW bc written as

Q@’J =: M172M27;;M1Qfn’-1J  + ;(~’(n’) + ~1(”~- l))A~ ni=lto M

where Ml = eo~;i and M2 =: e20F;~.
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where
0= I)iag{61], G)12, . . ..el N_]. 1, e2], e22, . . ..%N-1. J, . . @Arl, . . . . ~Nrv-11 ~} (3.24)

with ~ij == c7”~. Note that (3 is also a block diagonal matrix with 2 by 2 sui)]natrices  011 its main diagonal. l’he
computatio]l  of matrices C)ij is discussed in the next section.

(3.25)

A similar procedure can be used fcn reducing matrix Glz to a block diagonal form. Again, consider the two
vectors V and W as defined before and a pcrrnutatiotl  Inatrix  }’12cY12NZX2’”Z whcrcill W == I’12V implies that

{

vN~i ~~~ if i is odd
Wi ‘:

v++] if i is eve])

with WZN2 =- V 1. It c:Ln be then shc~wn that
: G] i = P:2RI’lz

where R&Y12N2x2N’ is a block diagonal matrix with 2 by 2 sub~llat) ices or! its diagonal ass

1( =. I)iag{Rlz, R13, . . . . Rljv,  O, R22, RM, . . . . R2N, 0, . . . . MN2 . . . . ltNN) 0} (3.26)

with

“=~($j “;)
(3.27)

From (3.25) and (3.26), it follows that
c“G” = P;2QI’]2 (3.28)

where
~~I~iag{VIZ,*ls,  . . . . VIN, ~,~zz,~za, . . . . W2N,1, . . ..~N2 . . .. WNN. ~} (3.29)

‘ij l’hus the matrix V is also block diagonal with 2 by 2 sut~)llatrices ‘Jij on its main diagonal. ‘l’hewit}l Wij  v: (2  . ,

computation of matrices Wij is discussed itl the sccti~rl. l’rorn (3.19), (3.23), and (3.28) the ~natrix lJ1 is given as a
product of a set of sparse matrices

1)1 = 1’:2Q1’~21’;leJ’]  11’;2*I’12

q’hc matrix Mz can bc computed in a similar fa(;hion as that of MI t)y
a with 2cr. IIricfty,  wc have

0
1 )

(3.30)

rcl)lacing  c with c’, i.e., cij with cji, and

(3.31)

1)2 :: e2”G~ = C0Gi2C20G{I C“Gia  ~

where ~’ and 0’ arc obtained from ‘1 and @ by replacing cij

IV. Stability and Efnciency of the Metl~od

A. Unconditional Siability

For tbc stability analysis of the mcthcd  wc consider the .1.2 norm of rlmtrix

M = M] T2M>T;M1 (4.1)

‘1’}lc unconditional stability of the method  follows from the fact that IIMII  S I which is establisbcd  M follows. ‘Jb

begin, note that the opcratiou  ~-2M 2-P: represents a similarity transforlnaticm  of matrix M2 which  prmrvcs  its
norm. Also, consider the fcdlowing property of Ioatrix  norm a<

IIABII < IIAIII]BII (4.2)
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‘1’hc  boundary conditions in (5.3) is also incompatible with our method. IIowevcr, unlike the Fourier methods,
this incolnpatibi]ity  does not arise froln the c}loicc of o]wrator  fc)r spatial discrctization  but rather from the technique
employed for temporal discretization.  Although (2.5)-(2.6) represent first-  order hyperbolic equations, they are derived
from the sccotld-order equation in (2.1) and thus there seems to be no solution for a direct incorporation of (5.3)
into (2.5)-(2.6). An obvious alternative for }Iandling the absorbing  houndrtry conditions in our method is then to usc
the same boundary strip tccl~uique as for t}le Fourier liiethods.

IIowcver, an interesting question is whether there are other absorbing boundary conditions more compatible
with our method. Our above discussion clearly suggests that tile second-ordct boundary conditions such as the one
discussed in [1 O] arc compatible with our Irlethod. l~or exarnplc,  on the boundary f2~ such boundary condition is
given by

1
u(~ + ; Ufr — ~uyy = o

2
(5.4)

which, using our notation, it can be written as

IC
‘t+ c9r-”2ry =() (5.5)

Equations (2.5)-(2.6) and (5.5) can now bc cornbir,cd  and written in a cornl]act fcmn as (2.9) with slightly different
matrices AT= and ll~y,  Ilowever, further analysis is needed for arl eflcient incorporation of this second-order boundary
condition. More prcciscly,  splitting techniques need to be devised whic]l prcscrvc  both  the stability and efficiency of
the met}lod.

Atlothcr  absorbing boundary ccmditiol,  },ig}]ly  co]~,],atiblc  with our ~[,ctl,od  is the Damping l’kchnigue suggested
in [1 9]. ‘1’his technique is similar to [18] in the sense that it also include boundary strips but diflers from [18] by
writing (2.1) M

11:~ := C2(U== + UY9)  -- tm~ -t f x, ysfl  and O < t <7’ (5.6)

with U(Z, y) == O for z, ytfl and V(X, y) > 0 for x, yEfi where h is the bour[dary  strip. ‘lhe  choice of optimal function
V(X,  y) is further discussed in [19]. Using our notation, (5.6) call bc written as

‘J’hc c.or]lputation of (5.7) can bc pcrforrncd in a same fashion w (2.5) by sirllljly replacing the matrix El in (3.10)
with a matrix fil given by

( )

T C% o
jjl = Soo (5.8)

o 0 0

where T = l)iag{t)ij}  is a diagonal matrix. Ehrthcrr[lorc,  ~ij # O only for grid pc,ints belonging to the boundary
strips. A second-order apprc)xirnation of the exponential of matrix ~;l is giverl by

‘1’hc  computation of the matrix e ‘1 is pcrfcnnlecl  a~ before, The  matrix e+ is diagonal with diagonal e]ements  equal
to or sxnallcr than 1 which preserves the stability of our method.

In addition to its high compatibility with cmr method and prescrvirlg  both the stability and optirnality  of the
co][!pulatiorlal  cost, another advantage of t}lis technique is that it. also allows t i 1] Ic- para]lcl  computation of our method
(see bc]ow).
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The ordering in application of (3.4) is arbitrary and thus several fo~nls  for c.o~llputing  t}ie lnatrix 1A can be derived.
l[owcver,  all these forms are equal in terms of accuracy, stability, and coml]utational  cost. ‘1’he  matrices Gil, Gr2,
G 13, and Gr4 have a structure similar to those in (3.18). Therefore, using suitable permutations, they can be reduced
to block diagonal matrices similar to that in (3.21), wherein tile 2 by 2 sul)nlatrices  on their main diagonals  also
have a structrrrc  similar to that in (3.22). q’})is allows a fast and sioble  co~nJJutatior~  of exponential of these matrices
by using the procedure described in the apl~endix.

IIigher  order spatial discretization  can be txeatcd  in a sirllilar fashion t)y exploiting the skew-symmetric and
?’oeplitz structure of the matrix Sat,. lngencral,fo  ranordcr  2v spatial accuracy, thcrnatrixSa,  issplittedinto2v
matrices. l’bus, the matrix D1 is obtained as a product of 2v - 1 sparse Inatrices.  It then follows that, for a spatial
accuracy ofordcr 2v, the implementation of (3.14)  involves anulnberof3(2v  -- 1) s~~arse nlatrix-vector  multiplications
wherein the matrices have a block diagonal structure similar tc, the matrix O irl (3.24) with 2 by 2 submatrices  on
their  main diagonals. ‘1’herefore,  the computational cost of the method lirlcarlyincreascs with the order of spatial
accuracy.

C. Iligher Order l’emporalAccuracy

Ourmcthod  can also bccxtencled  toirlclude afourtb-order temporal accuracy. IIere, we briefly discuss suchan
extension to illustrate the possibility of achieving higher  orcler  temporal accuracy.

I,ctusagain co~lsider  ar~latrix  Owritha  s1)littirlg~~O=  01+02 wit}lllcJ1lcc)ll irrl~ltirlg ~1~atrices01 and 02. Following
Ikltae. dt [6],afourth-order approximation ofmrttrix co isgivcn by

with 1. =
temporal

where

#At -. ~~@IAie~8JAtel, Atse; @~ A~e; @IA~ ./ [)((/jf)5)- . (5.13)

#4[01 +202, [01, 02]] and [01, 02] :- 016’2 --0101, which represents the cc)~nrnutator  operator. A fourth-order
approximation of (2.12) is then given by

to M (5.14)

(5.15)

Note that, t}lis splitting allows a fourth-order tem~~ora) accuracy while irlvolving only one time level, i.e., only Q(’”- l).

‘1’hekeypurposcof  this derivation istoillustratc that the resulting  ~llatrix Ghas asparse  structure similar to
thernatrix 11, given by (2.11). ‘I’hus,  similar techniques canbe used forsplit li~lgn~atri  xCandfr@ computation of
thetermec(Ai)3.  IIowever, inorder  tcJ1)reserve  ttlefourtll-ordcr accurac.y,  flrrt}icr analysL~isrlecded  to derive stable
tcchniquc  for computing the exponential of the rcsultirlg  two by two matrices (see $] V. A). To this end, the structure
of Inatrix C is a key incentive for SUC}L  further analysis.

VI. Techniques for Efficient Space ancl Time Parallel (_kmputation

‘J’he computational complexity of (3.14) is a function of bc~th space (i.e., number of the spatial grid points) and
time (i.e., number of the time steps). ]n this sense, tile computation is pcrforrllcd  in two dimensions: space and time.

Thus, onc can consider the exploitation of parallelianl  in one (i.e., either space or tilne)  or in both dimensions (i.e.,
both space and time). Most conventional approaches for parallel corn put atic,rl of (explicit or implicit) rnarching-in-
tirnc methods are space-parallel, that is, they attempt to exploit  parallel  isl~l c,nly in computation of each time step.
In the following, we first discuss some techniques for a more efl;cient  sl,ac.e-~)arallcl ccm~putation of our method. We
then discuss a technique that allows the computation of our nwthod  to be ~jartially parallelized  in time.
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A. Space Parallel Computation

At,  first glance, the sequence of matrix-vector rnu]tip]ications  for ir]ll>lerlrcIILatiori  of (3.14) seems to be readily
amenable to highly efficient parallel cornputaticm. In fact, given the block diagonal structure of matrices 0, W,
W, and ~’,  their multiplication by any vector cam be clccomposcd into a set c,f a large number  of subma t r i x -vec to r
multiplications, involving 2 by 2 submatrices, which can be performed in {L fully decoupled and parallel fashion.
IIowever, such an implementation would requite  a massive amount  of data corn] nunication  for performing various
permutations of vectors which result from matrix-vector multipli~ ations irwo]ving  the permutation matrices }’11,
J’fl, I’lZ, and 1’(2. in particular, on nm.ssively parallel M1hlI) architectures for which the communication latency
is much greater than the cost of floating-point operations, the communication cost of these permutations could be
much greater than the computation cost of the algorit,hln, thus severely degrading the overall performance of such a
paral]cl computat ion .

An obvious but partial solution to this pro}~lem is to reduce the rlurlllwr  of permutations by combining the
successive permutations in (3.30) and (3.32). ‘That is, by formirlg  a new perllmtation matrix as II = F’11P12.  Using
11 and its transpose, the number of perrnutatioll.s  in (3.30) and (3.32) caTl be reduced from 12 to 8.

A more efhcient  technique for improving the overall perforrl lance of ou r algorithm is based on a tradeoff between
computation and communication cost as follows. I/et us define the matrices:

lt can

where

b := P~l@Pll  and ~ :: 1’~2WPIZ (5.15)

be shown that the matrices t?) and ~ have a sparse arrd l~lock structure given by

(5.16)

the  subrnatrices  GI,  64, *1, and ~4 are diagotlal;  tile submatrices  ~Jz arid $3 have non~crcr elen~ents only
on their upper diagonal; the subrnatrices  b3  and ~2 have nonzero  elerllcrrts  mily on their lower diagonal. Taking
advantage of the regular and sparse structure of the nlatrices  b and $, it is a rather straightforward task to
exJ~loit parallelism in their multi  j}lication by a vector. q’his, for exa~nple,  car, be achieved by using some of the
well known techniques for exploitation of parallelism in matrix-vector multiplications arising in conventional explicit
methods. Ilowever,  even using the best clf these t.ech)liques} it is very u~llikcly that a speedup comparable to that
by using the matrices E) and W can be achieved in the computation. “1’he  key point, nevertheless, is the fact that
exploiting parallelism in multiplication of a vector by the matrices ~ atld @ involves a significantly leas amount of
data communication than performing the above-]  mentioned  perrnutatio~ls. ‘1’llcrefc)re, one can expect a much better
overall performance as a result of this tradcc)ff.

We can also introduce additional higher level parallelism in the corrlputation  by an appropriate algorithmic
modification as follows. An alternative second-c,rder approximation of the ]natrix  eoA: is given by

1 e At e,At ~ eWc~,At) + (_)((Af)3)
eoA’= ;(c 1 e (5.17)

from which, a second-order, stable, tetnporal  approximation of (2.12) is obtairled  as

Q(m) c $eA~=*te~~yA~ + e~~jv*teA3rA* )Q(~t-  1)+ ;(J ‘ ( m ) +  ~’(r’$- l))A~ nz~=lto M (5.18)

Aix At b qimply r~})lacirlg  rl with 2@1 i.e.,
Note that the matrix eATr At can be obtained from e‘ Y. by replacing cr with
2cY in matrix 0 given by (4.5). Definirrg

~?l =: eA3=Ate~;:rnAt aI)d fi~ ~ ~lj~=AtcA~VAt
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Figure 1: Cowiputational Mesh and Elroundaries
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